Aulton, M., Taylor, K. Eds (2013) Aulton's Pharmaceutics, 4th ed., The Design and Manufacture of Medicines, Churchill Livingstone, pp.736.
Evans, D. F., Wennerström, H. (1999) The colloidal domain: Where physics, chemistry, biology, and technology meet. Wiley, NY, pp. 632.
Kulkarni, V. S., Ed (2010) Handbook of non-invasive drug delivery systems. Non-invasive and minimally invasive drug delivery systems for pharmaceutical and personal care products. Elsevier, Amsterdam, pp. 301.
Scientific articles will be added.
EduSinglePage
This course is offered as part of programme:
Course content
The aim of the course is for the student to acquire knowledge enabling the appreciation of the structure and function of biological barriers, as they are relevant to understand and develop means of non-invasive drug delivery and sensing.
The course outlines the current understanding of the structure and function of biological barriers. Colloidal and surface chemical features of barriers, specifically relating to nails, skin, mucous membranes, and plant cuticle are addressed. The barriers are considered as being exposed to air or solutions, and the different cases are explored separately. Barrier properties are explained in terms of adsorption, absorption, partition, diffusion, assessing kinetics and thermodynamics of transport through membranes. Effects of exogenous factors on structure-function relationships are emphasized. Particularly, the effects that are caused by changes of temperature, relative humidity, water activity and other ambient conditions are considered. Cases when these conditions are regulated or modelled by applying formulations are discussed. Pharmaceutical aspects are covered in brief. Modern non-invasive and minimally invasive drug delivery and sensing technologies are reviewed, e.g., micro-needle patches, iontophoresis, etc.
Entry requirements
1. Bachelor’s degree with a major in chemistry, biochemistry, biomedical technology, biomedical methods and technology, biomedical laboratory science or in other areas of natural, medical, engineering sciences or technology with a minimum of 15 credits in chemistry and/or biochemistry.
2. The equivalent of English B, or English 6, in Swedish secondary school
3. Passing 45 credits of the courses in the Master’s program semesters 1 and 2 or equivalent (transferable credits)
Course literature
Course evaluation
Malmö University provides students who participate in, or who have completed a course, with the opportunity to express their opinions and describe their experiences of the course by completing a course evaluation administered by the University. The University will compile and summarise the results of course evaluations. The University will also inform participants of the results and any decisions relating to measures taken in response to the course evaluations. The results will be made available to the students (HF 1:14).